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HEAT TRANSFER ON THE SURFACE ON A SPHERICALLY BLUNTED CONE EXPOSED

TO A SUPERSONIC SPATIAL FLOW WITH INJECTION OF A COOLANT GAS

UDC 536.24.01V. I. Zinchenko and A. Ya. Kuzin

The heat-transfer processes in a supersonic spatial flow around a spherically blunted cone with al-
lowance for heat overflow along the longitudinal and circumferential coordinates and injection of a
coolant gas are studied numerically. The prospects of using highly heat-conducting materials and
injection of a coolant gas for reduction of the maximum temperatures at the body surface are demon-
strated. The solutions of the direct and inverse problems in one-, two-, and three-dimensional formu-
lations for different shell materials are compared. The error of the thin-wall method in determining
the heat flux on the heat-loaded boundary of the body is estimated.

One of the most complicated problems in interaction of high-enthalpy gas flows with flying vehicles is the
thermal protection of the constructions of the latter. Both active and passive methods of thermal protection are
used in practice, as well as the combined method: injection of a coolant gas into a high-enthalpy gas flow from
porous elements of constructions, combined with heat overflow on the surface caused by a proper choice of the
highly heat-conducting material of the composite shell [1–6]. The study of heat transfer under these conditions
is performed by solving direct [1–3] and inverse [4–6] problems. Methods of solving inverse problems (IP) are
particularly important because of the lack of information on the processes under study and increase requirements
to the accuracy of determining the heat-transfer characteristics of the body shell with allowance for the fact that
the heat- and mass-transfer processes are nonlinear, multidimensional, and multiparametric [7].

An effective method of solving multidimensional boundary-value IP is the method of iterative regularization
proposed in [8] and developed in other papers. Based on this method, Alifanov and Nenarokomov [9, 10] developed
algorithmic and program software for the experimental-numerical method of diagnostics f the external thermal
action on multilayered elements of constructions, where the heat transfer is described by a three-dimensional heat-
conduction equation in various coordinate systems. The method of iterative regularization in complex mathematical
models is complemented by regularization numerical methods [4–6, 11]. The necessity of using three-dimensional
formulations of IP for supersonic spatial flow analysis is caused by the fact that, in the case of motion of a
flying vehicle at incidence, heat overflow occurs not only along the longitudinal but also along the circumferential
coordinate due to the large difference in heat fluxes on the leeward and windward sides [6]. Injection of a coolant
gas decreases the temperature in the region of the porous spherical bluntness and favors heat overflow from the
peripheral part of the cone to the porous nose [3, 4]. However, there is no detailed study of the influence of
injection on the reconstructed temperature and heat flux in a wide range of thermophysical characteristics of the
shell material in the case of a spatial flow around the body in the literature. It is also of interest to estimate the
limits of applicability of one- and two-dimensional approaches and the thin-wall method for determining heat fluxes
at the body boundary.

The effect of heat overflow and injection of a coolant gas on heat-transfer characteristics in a wide range
of thermophysical parameters of the shell material is considered in the present work using the full mathematical
formulation of the problem of heating a spherically blunted cone with allowance for injection of a coolant gas from
the porous spherical part in a supersonic spatial flow and the algorithms developed for solving direct and inverse
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Fig. 1

three-dimensional heat-transfer problems [6]. The possibility of using one-, two-, and three-dimensional algorithms
for solving direct and inverse heat-transfer problems and the thin-wall method for reconstructing the heat fluxes
and temperature on the body surface is analyzed.

1. Physical and Mathematical Formulation of Direct and Inverse Problems. Heating of a spher-
ically blunted cone exposed to a supersonic air flow at incidence is considered (Fig. 1). The shell consists of a
permeable spherical and impermeable conical parts. The process of filtration of the injected gas in the direction
normal to the surface is one-dimensional, and the temperature of the porous medium is uniform. The problem is
considered in the natural coordinate system with the origin at the point of intersection of the axis of symmetry
of the body with the surface. We write the equation of conservation of energy for the porous spherical bluntness
(region I in Fig. 1)
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and the equation of heat conduction for the conical part of the shell (region II in Fig. 1)
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The initial and boundary conditions are
Ti|t=0 = Tin, i = 1, 2; (1.3)
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H = (RN − n1)/RN , r1 = (RN − n1) sin s̄, r2 = (RN − n1) cos θ + (s− sA) sin θ,

s̄ = s/RN , s = sA + cos−1 θ[z + (sin θ − 1)RN ].

In (1.1)–(1.9), t is the time, r and z are the transverse and longitudinal components of the cylindrical coordinate
system, n1, s, and η are the components of the natural coordinate system, T is the temperature, ρ is the true
density, (ρv)w is the flow rate of the coolant gas, cp and λ are the heat capacity and thermal conductivity, H, r1,
and r2 are the Lamé coefficients, RN is the radius of spherical bluntness, σ is the Stefan–Boltzmann constant, εi
(i = 1, 2) is the emissivity of the surface of the wetted material, qw is the convective heat flux from the gas phase,
θ is the angle of conicity, and L is the shell thickness. The subscript “w” refers to conditions at the interface of
gaseous and solid phases, “g” to the characteristics of the gas in the porous medium, “in” and “fin” to the initial
and final parameters, respectively, subscripts 1 and 2 refer to regions I and II of the composite shell, respectively;
the quantities at the internal surface of the shell and total values of the parameters are denoted by subscripts L
and Σ, respectively; the dimensionless quantities are denoted by bar.

In solving the direct problem (DP) of determining the temperature T (n1, s, η, t) in the composite shell, the
heat flux from the gas phase qw is set by formulas from [12] for the case of spatial (laminar or turbulent) boundary-
layer flow. Attenuation of the heat flux due to injection of the coolant gas whose composition coincides with the
incoming air flow is taken into account by formulas from [13]. As a result, in a coordinate system fitted to the
stagnation point O1, we obtain the following relations on the porous spherical part of the shell: for the laminar
boundary-layer flow,

qw = (α/cp)0[1− 0.6(ρv)w/(α/cp)0](hr − hw); (1.10)
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for the turbulent flow regime,
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2
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s̃ = arccos (cos s̄ cosβ + sin s̄ sinβ cos η), vm = (2he0)0.5.

To estimate the effect of injection on the heat flux in the screening zone, we use the data of [14] and formulas
of [2] obtained on the basis of processing the results of numerical calculations of a spatial turbulent boundary layer
and viscous shock layer [15, 16]:
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k = (γ − 1 + 2/M2
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For the law of injection of the coolant gas (ρv)w(s̃) = (ρv)w(0)(1+a sin2 s̃), the following relation is valid [2]:

b =
2(ρv)w(0){1− cos s̃1 + a[2/3− cos s̃1 + (1/3) cos3 s̃1]}

(α/cp)0(s̄− s̄1)[2 cos θ + (s̄− s̄1) sin θ]
,

cos s̃1 = cos s̄1 cosβ + sin s̄1 sinβ cos η, s̄1 = s̄A = π/2− θ.

In (1.10)–(1.16), p is the pressure, h is the enthalpy, α is the heat-transfer coefficient, s̃∗ is the coordinate of the
laminar–turbulent transition point in the coordinate system with the origin at the stagnation point, ζ1 and ζ2
are parameters of approximation, β is the angle of attack, Pr is the Prandtl number, V∞, ρ∞, and M∞ are the
free-stream velocity, density, and Mach number, and γ is the ratio of specific heats. The subscript e0 corresponds
to conditions at the outer edge of the boundary layer and the subscript ∞ refers to free-stream conditions; the
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characteristic parameters are denoted by the asterisk; the superscript 0 indicates the heat-transfer parameters α/cp
and qw in the absence of injection.

In solving the three-dimensional IP, the temperature Tw(s, η, t) and convective [qw(s, η, t)] and to-
tal [Qw(s, η, t) = qw(s, η, t) − εσT 4

w] heat fluxes at the boundary are determined by the mathematical model
(1.1)–(1.3), (1.5)–(1.9) with an additional condition: definition of the temperature on the back surface of the
shell as a function of the longitudinal and circumferential coordinates and time T (L, s, η, t) = T exp

L (s, η, t).
2. Algorithms of Solving Direct and Inverse Problems. In solving three-dimensional DP and IP, we

used algorithms of [6] based on the method of splitting in terms of spatial variables n1, s, and η [17]. In the DP,
one-dimensional equations of conservation of energy and heat conduction, which were obtained by splitting at each
time layer, in the n1, s, and η directions were calculated with a variable step by the iterative–interpolation method
(IIM) [18]. The special feature of temperature calculation in the s direction was the fact that it was a continuous
calculation beginning from the windward side with the condition of equal temperatures and heat fluxes (“matching”
condition) at the point s = 0, since the condition of symmetry is invalid at this point if the body moves at incidence.
As a result, the circumferential coordinate η varied within the range [0, π/2], and the temperature for other values
of η was determined from the condition of symmetry at the points η = 0 and η = π. In calculating temperature
in all directions, we used a system of difference equations with a tridiagonal matrix, which was obtained using the
logical scheme of the IIM for a parabolic generic equation with extremely general boundary conditions, including
conditions of the first, second, and third kind [18]. The systems of difference equations were solved by the method
of nonmonotonic sweep in the directions n1 and s and by the method of cyclic sweep [19] with iterations over
coefficients with a given accuracy in the direction η.

After application of the method of splitting in terms of spatial variables, the IP was solved in three stages
at each time layer. At the first stage, the temperature in the direction n1 was calculated on the basis of a specific
temperature T exp

L (s, η, t) by the method used in [6], where the difference scheme was obtained for a parabolic generic
equation and allows one to take into account the injection of the coolant gas. Using this temperature at the initial
condition, the temperature in the direction s was determined at the second stage by the IIM. The temperature
in the direction η was found at the third stage in a similar manner. Then we passed to the next time layer and
repeated the procedure. Based on the resultant temperature field, we determined the total heat flux Qw(s, η, t),
and, then, form the boundary conditions (1.4), the convective heat flux qw(s, η, t).

This method of solving the three-dimensional IP allows one to study both fast and slow heat-transfer pro-
cesses. The stability of the solution is achieved by using the IIM implicit difference scheme related to the spline
theory [20] and by smoothing the initial temperature T exp

L (s, η, t) by methods from [21, 22] or by solution regu-
larization by Tikhonov’s method [8]. A stable solution is also obtained by using one- and two-dimensional cubic
B-splines [23] for data approximation. The above methods of suppressing instability of the solution are used in
solving various one-dimensional [11] and also two- and three-dimensional [4–6] inverse problems.

3. Results of Numerical Calculations. Three-dimensional DP and IP were solved numerically using
programs developed in the Fortran code. The time of solving the three-dimensional reference variants of DP and
IP up to a steady temperature distribution (t = 200 sec) on a 11× 41× 13 computational grid was approximately
9 min on a Pentium-3 computer. The direct and inverse spatial problems were tested both at the level of individual
program modules and at the level of programs as a whole. The basic program modules, such as the solution of the
one-dimensional parabolic generic equation with the extremely general boundary conditions and the solution of the
one-dimensional boundary-value IP for this case, were compared with the known solutions [18, 24]. The spatial DP
in the particular case t→∞ without allowance for heat overflow in the directions s and η was tested by comparing
the steady temperature of the surface with the radiative equilibrium temperature Tw,eq. In solving the DP in the
full formulation, the steady temperature of the surface satisfied the relation [3]

π∫
0

{ sA∫
0

r1w[qw − ε1σT
4
w + cp,g(ρv)w(Tin − Tw)] ds+

sB∫
sA

r2w(qw − ε2σT
4
w) ds

}
dη = 0,

which is obtained by integrating the initial boundary-value problem (1.1)–(1.9) in the steady case. The numerical
solutions of [3, 6] were also used as tests. The spatial IP was tested by comparison with the “exact” solution, which
was assumed to be the numerical solution of the spatial DP.

The boundary-layer flow on the porous spherical shell was assumed to be laminar in the vicinity of the
stagnation point and turbulent on the remaining part of the spherical shell and on the cone. We used a widely used
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Fig. 2

model of point transition from the laminar to the turbulent flow regime. The transition point s̃∗ was determine
from the condition of the change of the sign of the difference in the values of α/cp for the laminar (1.11) and
turbulent (1.14) flow regimes in the region [0, s̃1], and the position of this point depended on the parameters in Eqs.
(1.11) and (1.14).

The calculations were performed for the following values of the governing parameters borrowed from [3, 6]:
cΣ = cp1ρ1(1 − ϕ) + cp,gρgϕ, λΣ = λ1(1 − ϕ) + λgϕ, cp,g = b1 + b2T , b1 = 965.5, b2 = 0.147, Tin = T∞ = 300 K,
cp∞ = 103 J/(kg ·K), ρg = 1.3 kg/m3, λg = 0.026 W/(m ·K), L = 0.005 m, εi = 0.85 (i = 1, 2), RN = 0.0185 m,
ρ∞ = 0.208 kg/m3, V∞ = 2080 m/sec, β = 20◦, θ = 5◦, porosity ϕ = 0.34, γ = 1.4, M∞ = 6, Pr = 0.72, ζ1 = 0.285,
ζ2 = 0.165, and a = 0. As in [6], we considered shell materials with a wide range of thermophysical characteristics:
copper [λ = 386 W/(m ·K), ρ = 8950 kg/m3, and cp = 376 J/(kg ·K)], coal–plastic [λ = 0.75 W/(m ·K), ρ =
1350 kg/m3, and cp = 1062 J/(kg ·K)), and steel [λ = 20 W/(m ·K), ρ = 7800 kg/m3, and cp = 600 J/(kg ·K)].
The pressure distribution on the body surface pe/pe0 was found by solving the spatial gas-dynamic problem [25].

Figures 2–4 and 5–6 show the solutions of direct and inverse heat-transfer problems, respectively, in the
planes of symmetry η = 0 and η = π.

Figure 2 shows the influence of injection of the coolant gas on the distribution of the steady temperature
Tw,st over the surface (t = 200 sec) (curves 1–3 and 1′–3′) and the radiative equilibrium temperature Tw,eq (curves 4
and 4′) on the windward (s̄ > s̄O1) and leeward (s̄ 6 0 ∪ 0 < s̄ < s̄O1) sides of the body. Curves 1–4 were obtained
for the case without injection, and curves 1′–4′ were obtained with allowance for injection of the coolant gas with
a flow rate (ρv)w = 1.626 kg/(m2· sec). The curves correspond to shells made of copper (curves 1 and 1′), steel
(curves 2 and 2′), and coal–plastic (curves 3 and 3′). The radiative equilibrium temperature Tw,eq determines the
maximum reachable temperature of the surface in the absence of heat overflow in the longitudinal and circumferential
directions. On the conical part of the shell, Tw,eq is found from the nonlinear relation

qw − εσT 4
w,eq = 0,

and on the spherical part of the shell, it is found from the condition of conservation of energy on the surface with
allowance for the steady solution for a thin porous shell:

qw − εσT 4
w,eq = (ρv)wcp,g(Tw,eq − Tin).

It follows from Fig. 2 that injection of the coolant gas significantly decreases the steady temperature of
the surface and the radiative equilibrium temperature. On the leeward side of the porous spherical bluntness,
for example, at the point s̄ ≈ −1.35, the difference in the steady temperature values obtained without and with
allowance for injection is approximately 430 K for copper, 750 K for steel, and 1020 K for coal–plastic. The values
of the radiative temperature at this point differ approximately by 1050 K.

The clear minimum in the distribution of the radiative equilibrium temperature is caused by displacement
of the stagnation point to the windward side, which is due to the motion of the body at incidence. This leads to
overflow of an additional mass of the cold coolant gas to the leeward side, which decreases the heat flux and surface
temperature. This is manifested in the increase in the parameter b in Eq. (1.16) for the convective heat flux in the
screening zone; the parameter b is the ratio of the total mass of the injected gas to the product of the heat-transfer
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Fig. 3 Fig. 4

coefficient in the considered cross section s in the absence of injection and the surface area of the cone from the
cross section s1 to the current value of s [2].

Owing to heat overflow from the peripheral part of the cone to the porous nose, the temperature on the
windward peripheral part of the cone decreases with increasing thermal conductivity of the material λ. On the
leeward side of the peripheral part of the cone surface, the temperature Tw,st changes nonmonotonically, depending
on λ. As in the case without injection (ρv)w = 0 [6], this is caused by the nonmonotonic distribution of the heat flux
along the circumferential coordinate η and heat overflow in the circumferential direction. On the porous spherical
part, in the vicinity of the frontal critical point, where a laminar boundary-layer flow regime is observed, an increase
in the thermal conductivity λ is accompanied by an increase in the steady temperature of the surface.

As it could be expected,the greatest effect of heat overflow is observed for copper, and the smallest effect
is observed for coal–plastic. For the latter, the steady temperature of the surface differs insignificantly from the
radiative equilibrium temperature, since the heating process is close to one-dimensional. Owing to heat overflow
along the longitudinal and circumferential coordinates, the steady temperature of the surface on the peripheral part
of the cone on the windward side for copper is approximately 200 K lower than for steel and coal–plastic. On the
leeward side, this difference is smaller.

The dependences Tw,st(s̄) (curves 1–5) and Tw,eq(s̄) (curves 6 and 7) for various flow rates of injection (ρv)w

for copper are plotted in Fig. 3 [(ρv)w = 0 (curves 1 and 6), 1.626 kg/(m2 · sec) (curves 2 and 7), and 3, 6, and
10 kg/(m2 · sec) (curves 3, 4, and 5, respectively)]. It follows from Fig. 3 that, as the flow rate of injection increases
from 0 to 10 kg/(m2 · sec), the maximum decrease in the steady temperature of the surface is approximately 1350 K,
and the maximum decrease in the radiative equilibrium temperature is 1120 K.

We studied the influence of heat transfer in the directions n1, s̄, and η on the dependence Tw,st(s̄) for
copper, steel, and coal–plastic. For each material considered, the heating problem was solved in one-, two-, and
three-dimensional formulations. An analysis of numerical results shows that heat overflow has almost no effect on
the distribution of the steady temperature of the surface in the case of coal–plastic and has a small effect in the case
of steel, except for the point s̄ ≈ −1.35 where the overflow effect leads to a 100–150 K change in temperature. The
effect of heat overflow is rather significant in all directions for copper (Fig. 4). The results in Fig. 4 were calculated
for (ρv)w = 1.626 kg/(m2 · sec). Curve 1 was obtained with allowance for heat overflow in the directions n1, s̄,
and η, curve 2 in the directions n1 and s̄, and cure 3 in the directions n1 and η. Curve 4 corresponds to the
one-dimensional formulation, and curve 5 obtained for λi → ∞ (i = 1, 2) degenerates into a straight line parallel
to the axis s̄ due to equalization of the steady temperature profile in the shell. For copper, steel, and coal–plastic,
the steady temperature of the surface calculated by the one-dimensional model (variables n1 and t) coincides in the
graph scale with the radiative equilibrium temperature Tw,eq(s̄), which confirms again the validity of the algorithm
and program.

The results of solving the IP for (ρv)w = 1.626 kg/(m2 · sec) are plotted in Figs. 5 and 6. Figure 5 shows the
distribution of the total heat flux over the contour for t = 1 and 5 sec (curves 1 and 2, respectively) for the copper
shell (the solid curves are the “exact” solution of the three-dimensional IP constructed on the basis of the DP
solution, and the dashed curves are the numerical solution of the three-dimensional IP). Despite the complicated
nonmonotonic dependence Qw(s̄) caused by heat overflow and injection, the heat-flux values are determined rather

715



Fig. 5 Fig. 6

accurately. At the same time, the neglect of heat overflow along the longitudinal and circumferential coordinates
leads to large errors in heat-flux determination. The dot-and-dashed curves show the dependence Qw(s̄) obtained
without allowance for heat overflow in the directions s̄ and η; the dotted curve shows the results obtained without
allowance for heat overflow in the direction η. In all calculation variants, the initial data for the IP were the “exact”
solution of the three-dimensional DP for the temperature on the back surface of the shell T exp

L (s, η, t). The results
obtained allow us to conclude that it is necessary to use three-dimensional IP algorithms for reconstructing the heat
flux to a shell made of a highly heat-conducting material.

Figure 6 shows the results of solving the three-dimensional IP of reconstructing convective heat fluxes on
the boundary of highly heat-conducting materials in a wide range of temperatures. The solid curves are the exact
solution of the three-dimensional IP for the copper shell, and the dashed curves show the numerical solution with the
use of a three-dimensional algorithm. Curves 1–3 correspond to the times t = 1, 5, and 200 sec. The results obtained
indicate that it is possible to use the developed algorithm of solving the three-dimensional boundary-value IP to
interpret the readings of heat-flux gauges if the measurement time is long. The issue of the validity of employing the
widely used thin-wall method [13] for determining the heat fluxes on the surface of highly heat-conducting materials
with injection was also considered. In this method, the total heat flux on the wall is determined by the following
formulas: in the absence of injection,

Qw(s̄, η, t) = qw(s̄, η, t)− εσT 4
w = ρcpL

dTw

dt
,

and with allowance for injection,

Qw(s̄, η, t) = qw(s̄, η, t)− εσT 4
w = ρcpL

dTw

dt
+ (ρv)wcp,g(Tw − Tg).

The dependence qw(s̄) calculated by the thin-wall method is plotted in Fig. 6 by the dotted curves. The
results obtained indicate that it is not reasonable to use this method for reconstructing heat fluxes in the case highly
heat-conducting materials.

As in [6], the effect of the errors of definition of the initial temperature T exp
L (s, η, t) on the IP solution was

studied. For this purpose, temperature perturbations in time were prescribed according to a saw-tooth law; the
amplitude of perturbations was 1% of the current temperature values at points with the coordinates s̄ = 0.89 and
1.04. Smoothing of the perturbed temperature by Tikhonov’s regularization method allowed us to obtain a steady
solution of the three-dimensional IP, which was in good agreement with the exact solution.

Thus, the influence of heat overflow along the longitudinal and circumferential coordinates and the effect
of injection of a coolant gas on the characteristics of spatial heat transfer were considered using the developed
algorithms of solving three-dimensional direct and inverse heat-transfer problems. The joint use of highly heat-
conducting materials and injection of a coolant gas was shown to be efficient for decreasing the maximum tem-
peratures on heat-loaded sectors of the shell of the wetted body. The error of using one- and two-dimensional
algorithms of solving DP and IP and the thin-wall method in reconstructing heat fluxes on the surface of highly
heat-conducting materials was estimated.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-00352).
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